Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 120: 2-24, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054357

RESUMO

After two decades of intensive research and attempts of clinical translation, stem cell based therapies for cardiac diseases are not getting closer to clinical success. This review tries to unravel the obstacles and focuses on underlying mechanisms as the target for regenerative therapies. At present, the principal outcome in clinical therapy does not reflect experimental evidence. It seems that the scientific obstacle is a lack of integration of knowledge from tissue repair and disease mechanisms. Recent insights from clinical trials delineate mechanisms of stem cell dysfunction and gene defects in repair mechanisms as cause of atherosclerosis and heart disease. These findings require a redirection of current practice of stem cell therapy and a reset using more detailed analysis of stem cell function interfering with disease mechanisms. To accelerate scientific development the authors suggest intensifying unified computational data analysis and shared data knowledge by using open-access data platforms.


Assuntos
Cardiopatias/terapia , Transplante de Células-Tronco , Animais , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Transplante de Células-Tronco/métodos
2.
EBioMedicine ; 22: 208-224, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28781130

RESUMO

OBJECTIVE: The phase III clinical trial PERFECT was designed to assess clinical safety and efficacy of intramyocardial CD133+ bone marrow stem cell treatment combined with CABG for induction of cardiac repair. DESIGN: Multicentre, double-blinded, randomised placebo controlled trial. SETTING: The study was conducted across six centres in Germany October 2009 through March 2016 and stopped due slow recruitment after positive interim analysis in March 2015. PARTICIPANTS: Post-infarction patients with chronic ischemia and reduced LVEF (25-50%). INTERVENTIONS: Eighty-two patients were randomised to two groups receiving intramyocardial application of 5ml placebo or a suspension of 0.5-5×106 CD133+. OUTCOME: Primary endpoint was delta (∆) LVEF at 180days (d) compared to baseline measured in MRI. FINDINGS (PRESPECIFIED): Safety (n=77): 180d survival was 100%, MACE n=2, SAE n=49, without difference between placebo and CD133+. Efficacy (n=58): The LVEF improved from baseline LVEF 33.5% by +9.6% at 180d, p=0.001 (n=58). Treatment groups were not different in ∆LVEF (ANCOVA: Placebo +8.8% vs. CD133+ +10.4%, ∆CD133+vs placebo +2.6%, p=0.4). FINDINGS (POST HOC): Responders (R) classified by ∆LVEF≥5% after 180d were 60% of the patients (35/58) in both treatment groups. ∆LVEF in ANCOVA was +17.1% in (R) vs. non-responders (NR) (∆LVEF 0%, n=23). NR were characterized by a preoperative response signature in peripheral blood with reduced CD133+ EPC (RvsNR: p=0.005) and thrombocytes (p=0.004) in contrast to increased Erythropoeitin (p=0.02), and SH2B3 mRNA expression (p=0.073). Actuarial computed mean survival time was 76.9±3.32months (R) vs. +72.3±5.0months (NR), HR 0.3 [Cl 0.07-1.2]; p=0.067.Using a machine learning 20 biomarker response parameters were identified allowing preoperative discrimination with an accuracy of 80% (R) and 84% (NR) after 10-fold cross-validation. INTERPRETATION: The PERFECT trial analysis demonstrates that the regulation of induced cardiac repair is linked to the circulating pool of CD133+ EPC and thrombocytes, associated with SH2B3 gene expression. Based on these findings, responders to cardiac functional improvement may be identified by a peripheral blood biomarker signature. TRIAL REGISTRATION: ClinicalTrials.govNCT00950274.


Assuntos
Antígeno AC133/metabolismo , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Resultado do Tratamento , Função Ventricular Esquerda
3.
Stem Cell Res Ther ; 8(1): 33, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187777

RESUMO

BACKGROUND: CD133+ stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133+ stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. METHODS: CD133+ stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133+ cells was evaluated and compared to manually isolated CD133+ cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. RESULTS: We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 106 viable CD133+ cells with a mean log10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. CONCLUSIONS: Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133+ CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs.


Assuntos
Automação Laboratorial/instrumentação , Separação Celular/instrumentação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Infarto do Miocárdio/terapia , Regeneração/fisiologia , Antígeno AC133/genética , Antígeno AC133/metabolismo , Idoso , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/fisiologia , Diferenciação Celular , Proliferação de Células , Separação Celular/métodos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Camundongos , Camundongos SCID , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Doadores de Tecidos
4.
Bone Marrow Res ; 2014: 182645, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25610653

RESUMO

Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes.

5.
Am J Bot ; 92(1): 2-12, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21652378

RESUMO

We elucidated scent components, daily emission patterns, and the localization of floral scent release of Mirabilis jalapa. Volatiles emitted by the whole plant as well as by detached flowers were investigated using dynamic headspace analysis and gas chromatography/ mass spectrometry. Among several constituents including (Z)-3-hexenyl acetate, ß-myrcene, (Z)-ocimene, and benzyl benzoate, the monoterpene (E)-ß-ocimene was the major fragrance component. Fragrance release occurred in a time-dependent manner. The emission of volatiles, including (E)-ß-ocimene, showed an evening-specific maximum (1700-2000 pm). The emission of (Z)-3-hexenyl acetate reached its maximum 3 h later. Histological (neutral red staining) and morphological studies (electron and light microscopy) of the flower surface and tissues of M. jalapa revealed differences in surface structures and tissue characteristics. The flower could be divided into four main sections, including the tube, the transition zone between tube and limb, a star-shaped center of the limb, and petaloid lobes of the limb. These petaloid lobes are the site of (E)-ß-ocimene release. Stomata and trichomes found on the abaxial flower surface were not directly involved in fragrance release. Clear indications of osmophores involved in scent release could not be found. Thus, the results indicate that floral volatiles probably are released by diffuse emission in M. jalapa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...